organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(S)-2-(Pyrrolidinium-2-ylmethylsulfanyl)pyridinium dibromide

Shuai Zhang, Yifeng Wang, Aibao Xia and Shuping Luo*

State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China Correspondence e-mail: shuaizhang867@gmail.com

Received 6 March 2008; accepted 27 March 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.013 Å; R factor = 0.037; wR factor = 0.108; data-to-parameter ratio = 23.0.

In the title compound, $C_{10}H_{16}N_2S^{2+}\cdot 2Br^-$, the pyrrolidine ring displays an envelope conformation, with the flap C atom lying 0.484 (5) Å out of the plane of the rest of the pyrrolidine ring. The thioether group connects the pyridine ring and the 2-methylpyrrolidine group. Both pyrrolidine NH bonds form hydrogen bonds to the bromide anions. These hydrogen bonds link the cations and anions in a helical chain along the *c* axis.

Related literature

For related literature, see: Ishii et al. (2004); Xu et al. (2007); Larson (1970).

Experimental

Crystal data

 $\begin{array}{l} {\rm C_{10}H_{16}N_2S^{2+}\cdot 2Br^-}\\ M_r = 356.12\\ {\rm Trigonal},\ P3_2\\ a = 8.9892\ (9)\ {\rm \AA}\\ c = 15.4567\ (14)\ {\rm \AA}\\ V = 1081.66\ (18)\ {\rm \AA}^3 \end{array}$

Z = 3 Mo K α radiation μ = 5.76 mm⁻¹ T = 296 (1) K 0.35 × 0.30 × 0.23 mm

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.162, T_{max} = 0.266$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.108$ S = 1.013169 reflections 138 parameters H-atom parameters constrained 10585 measured reflections 3169 independent reflections 1902 reflections with $F^2 > 2.0\sigma(F^2)$ $R_{int} = 0.061$

 $\begin{array}{l} \Delta \rho_{max} = 0.67 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.53 \mbox{ e } \mbox{ Å}^{-3} \\ \mbox{ Absolute structure: Flack (1983),} \\ 1037 \mbox{ Friedel pairs} \\ \mbox{ Flack parameter: } 0.017 \mbox{ (2)} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H2 \cdots Br1$ $N1 - H3 \cdots Br1^{i}$	0.86 0.86	2.45 2.43	3.278 (7) 3.271 (5)	163 165

Symmetry code: (i) $-x + y, -x + 1, z + \frac{1}{3}$.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2004); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *CrystalStructure*.

We thank Professor Jian-Ming Gu of Zhejiang University for his help.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2087).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Ishii, T., Fujioka, S., Sekiguchi, Y. & Kotsuki, H. (2004). J. Am. Chem. Soc. 126, 9558–9559.
- Larson, A. C. (1970). *Crystallographic Computing*, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Xu, D. Q., Luo, S. P., Wang, Y. F. & Xu, Z. Y. (2007). Chem. Commun. pp. 4393– 4395.

supplementary materials

Acta Cryst. (2008). E64, o1142 [doi:10.1107/S1600536808008313]

(S)-2-(Pyrrolidinium-2-ylmethylsulfanyl)pyridinium dibromide

S. Zhang, Y. Wang, A. Xia and S. Luo

Comment

In recent years, proline and its derivatives have been studied extensively because of their ability to catalyze a large number of reactions (Ishii *et al.*, 2004). The title compound is a hydrobromide of an ionic compound that was synthesized from *L*-proline. It was prepared as a kind of ionic organocatalyst for use in the asymmetric Michael addition of carbonyl compounds to nitroalkenes (Xu *et al.*, 2007). The compound consists of two ionic pairs, protonated ammoniums and Br⁻ anions. The chiral atom C1 has the expected S conformation, and the C1/C3/C4/N1 atoms of pyrrolidine are almost coplanar. The distance of atom C2 to the C1/C3/C4/N1 mean plane is 0.484 (5) Å, while the distance of atom C5 to the plane is 0.865 (9) Å. In addition, the dihedral angle of the C1/N1/C3/C4 mean plane and the pyridine ring is 67.82 (4) °. The thioether group connects the pyridine ring and the 2-methylpyrrolidine group, the torsion angle of C6—S1—C5—C1 is 97.13 (4) °.

Experimental

The title compound was readily synthesized by treating 2-mercaptopyridine with (S)-(+)-2-bromomethylpyrrolidine hydrobromide in MeCN. The compound (S)-(+)-2-bromomethylpyrrolidine hydrobromide was obtained from commercially available *L*-proline by reduction with NaBH₄ and subsequent bromination with PBr₃. Suitable crystals were obtained by slow evaporation of methanol at room temperature.

Refinement

All H atoms were placed in calculated positions with C—H=0.98 Å (*sp*), C—H=0.97 Å (sp2), C—H=0.93 Å (aromatic), N—H=0.86 Å and included in the final cycles of refinement as a riding model, with U_{iso} (H)=1.2 U_{eq} of the carrier atoms.

Figures

Fig. 1. The asymmetric unit of the title compound, with the atomic labeling scheme. Displacement ellipsoids are drawn at the 40% probability level.

Fig. 2. Hydrogen bonding in the title compound. Symmetry codes: (i) 1-y, 1+x-y, -1/3+z; (ii) 1-y, 1+x-y, 2/3+z; (iii) -x+y, 1-x, 1/3+z.

(S)-2-(Pyrrolidinium-2-ylmethylsulfanyl)pyridinium dibromide

Crystal data

$C_{10}H_{16}N_2S^{2+}\cdot 2Br^{-}$	Z = 3
$M_r = 356.12$	$F_{000} = 528.00$
Trigonal, P3 ₂	$D_{\rm x} = 1.640 {\rm Mg} {\rm m}^{-3}$
Hall symbol: P 32	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 8.9892 (9) Å	Cell parameters from 5169 reflections
b = 8.9892 (9) Å	$\theta = 3.7 - 27.4^{\circ}$
c = 15.4567 (14) Å	$\mu = 5.76 \text{ mm}^{-1}$
$\alpha = 90^{\circ}$	T = 296 (1) K
$\beta = 90^{\circ}$	Chunk, colorless
$\gamma = 120^{\circ}$	$0.35 \times 0.30 \times 0.23 \text{ mm}$
$V = 1081.66 (18) \text{ Å}^3$	

Data collection

Rigaku R-AXIS RAPID diffractometer	1902 reflections with $F^2 > 2.0\sigma(F^2)$
Detector resolution: 10.00 pixels mm ⁻¹	$R_{\rm int} = 0.061$
ω scans	$\theta_{\text{max}} = 27.4^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi,1995)	$h = -11 \rightarrow 11$
$T_{\min} = 0.162, \ T_{\max} = 0.266$	$k = -11 \rightarrow 10$
10585 measured reflections	$l = -18 \rightarrow 20$
3169 independent reflections	

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.013$
$R[F^2 > 2\sigma(F^2)] = 0.036$	$\Delta \rho_{max} = 0.67 \text{ e } \text{\AA}^{-3}$
$wR(F^2) = 0.108$	$\Delta \rho_{min} = -0.53 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.01	Extinction correction: Larson (1970) Crystallograph- ic Computing eq. 22
3169 reflections	Extinction coefficient: 385 (18)
138 parameters	Absolute structure: Flack (1983), 1037 Friedel Pairs
H-atom parameters constrained	Flack parameter: 0.017 (2)
$w = 1/[0.7600\sigma(F_o^2)]/(4F_o^2)$	

Special details

Refinement. Refinement using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.51453 (17)	0.87503 (13)	0.16904 (9)	0.1032 (4)
Br2	0.10004 (11)	0.14553 (10)	0.04190 (9)	0.0605 (2)
S1	0.0678 (3)	0.4733 (3)	0.31433 (12)	0.0671 (7)
N1	0.4515 (9)	0.5570 (8)	0.2963 (3)	0.067 (2)
N2	0.0359 (7)	0.6865 (8)	0.2110 (3)	0.053 (2)
C1	0.3184 (9)	0.4069 (9)	0.2462 (4)	0.053 (2)
C2	0.3905 (11)	0.2858 (11)	0.2388 (5)	0.071 (3)
C3	0.5771 (13)	0.4004 (16)	0.2379 (8)	0.086 (5)
C4	0.6121 (14)	0.5513 (18)	0.2933 (7)	0.077 (5)
C5	0.1434 (10)	0.3261 (10)	0.2879 (4)	0.059 (2)
C6	0.0388 (9)	0.5412 (9)	0.2143 (4)	0.050 (2)
C7	0.0160 (10)	0.4576 (10)	0.1352 (4)	0.059 (2)
C8	-0.0040 (10)	0.5283 (11)	0.0612 (4)	0.066 (2)
C9	-0.0037 (10)	0.6817 (12)	0.0635 (4)	0.067 (2)
C10	0.0138 (10)	0.7576 (11)	0.1396 (4)	0.062 (2)
H1	0.3105	0.4460	0.1880	0.064*
H2	0.4673	0.6511	0.2735	0.080*
Н3	0.4187	0.5509	0.3491	0.080*
H7	0.0144	0.3534	0.1330	0.071*
H8	-0.0180	0.4724	0.0087	0.079*
Н9	-0.0154	0.7310	0.0130	0.080*
H10	0.0108	0.8593	0.1432	0.074*
H21	0.3560	0.2085	0.2879	0.085*
H22	0.3522	0.2195	0.1857	0.085*
H31	0.6169	0.4377	0.1793	0.103*
H32	0.6343	0.3421	0.2614	0.103*
H41	0.6450	0.5369	0.3511	0.092*
H42	0.7033	0.6564	0.2682	0.092*
H51	0.1477	0.2708	0.3409	0.071*
H52	0.0614	0.2403	0.2484	0.071*
H201	0.0494	0.7403	0.2590	0.064*

Fractional atomic coordinates	and isotropic or	· equivalent isotropic	displacement parameters $(Å^2)$	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.1369 (10)	0.0925 (8)	0.0513 (4)	0.0357 (7)	0.0061 (5)	0.0034 (4)
Br2	0.0670 (6)	0.0510 (5)	0.0630 (4)	0.0292 (4)	0.0073 (4)	0.0054 (3)
S1	0.0848 (16)	0.0802 (16)	0.0554 (11)	0.0555 (14)	0.0125 (10)	0.0098 (10)
N1	0.072 (4)	0.063 (4)	0.053 (3)	0.026 (4)	-0.001 (3)	-0.006 (3)
N2	0.055 (4)	0.055 (4)	0.053 (3)	0.029 (3)	0.011 (2)	0.003 (2)
C1	0.052 (4)	0.046 (4)	0.058 (4)	0.022 (4)	-0.001 (3)	-0.001 (3)
C2	0.055 (5)	0.082 (6)	0.084 (5)	0.040 (5)	0.000 (4)	-0.005 (4)
C3	0.070 (8)	0.088 (10)	0.090 (14)	0.032 (7)	0.004 (7)	0.000 (10)
C4	0.061 (7)	0.083 (14)	0.093 (10)	0.041 (9)	-0.004 (6)	-0.003 (10)

supplementary materials

C5	0.051 (5)	0.063 (5)	0.065 (5)	0 030 (4)	0.011 (3)	0.009(3)
C6	0.051(5)	0.003(3)	0.000(3)	0.030(4)	0.001(3)	-0.003(3)
C7	0.075 (5)	0.056 (5)	0.055 (4)	0.040 (4)	0.002 (3)	0.002(3)
C8	0.071 (6)	0.078 (6)	0.053(4)	0.041 (5)	0.001(3)	0.001(4)
C9	0.077 (6)	0.082 (6)	0.053(4)	0.049(5)	-0.002(3)	0.001(1)
C10	0.088 (6)	0.062(0)	0.055(1)	0.048(5)	0.002(3)	0.002(1)
010	0.000 (0)	0.001 (3)	0.050 (1)	0.010(0)	0.002 (3)	0.009 (5)
Geometric paran	neters (Å, °)					
S1—C5		1.811 (11)	N1-	—Н3	0.86)
S1—C6		1.729 (7)	N2-	-H201	0.86)
N1—C1		1.496 (8)	C1-	-H1	0.98)
N1—C4		1.471 (18)	C2-	-H21	0.97)
N2—C6		1.321 (12)	C2-	-H22	0.97)
N2-C10		1.339 (10)	C3-	-H31	0.97)
C1—C2		1.524 (16)	C3-	-H32	0.97)
C1—C5		1.508 (10)	C4-	-H41	0.97)
C2—C3		1.465 (12)	C4-	-H42	0.97)
$C_3 - C_4$		1 499 (9)	C5-	-H51	0.97)
C6—C7		1.396 (9)	C5-	-H52	0.97)
C7—C8		1.363 (12)	C7-	-H7	0.93)
C8-C9		1 379 (16)	C8-	H8	0.93)
C9—C10		1 329 (10)	C9-	_H9	0.93)
N1—H2		0.860	C10)—H10	0.93)
C5—S1—C6		103.5 (4)	C1-		110.8	3
C1—N1—C4		108.0 (8)	C3-	—С2—Н21	110.8	3
C6—N2—C10		125.8 (6)	C3-	—С2—Н22	110.8	3
N1—C1—C2		104.4 (7)	H2	1—С2—Н22	109.:	5
N1—C1—C5		112.6 (6)	C2-	—С3—Н31	110.3	3
C2—C1—C5		113.7 (6)	C2-	—С3—Н32	110.3	
C1—C2—C3		104.2 (8)	C4-	—С3—Н31	110.3	
C2—C3—C4		106.2 (11)	C4-	—С3—Н32	110.3	
N1—C4—C3		106.5 (8)	H3	I—С3—Н32	109.:	5
S1—C5—C1		115.3 (6)	N1-		110.2	2
S1—C6—N2		117.7 (5)	N1-	—С4—Н42	110.2	2
S1—C6—C7		126.9 (7)	C3-		110.2	2
N2—C6—C7		115.4 (7)	C3-	—С4—Н42	110.2	2
С6—С7—С8		120.2 (9)	H4	I—C4—H42	109.:	5
С7—С8—С9		120.7 (7)	S1-	—С5—Н51	108.)
C8—C9—C10		118.4 (8)	S1-	—С5—Н52	108.	0
N2-C10-C9		119.5 (10)	C1-		108.	0
C1—N1—H2		109.8	C1-	—С5—Н52	108.0)
C1—N1—H3		109.8	H5	I—С5—Н52	109.:	5
C4—N1—H2		109.8	C6-	—С7—Н7	119.9)
C4—N1—H3		109.8	C8-	—С7—Н7	119.9)
H2—N1—H3		109.5	C7-	—С8—Н8	119.7	7
C6—N2—H201		117.1	С9-	—С8—Н8	119.7	7
C10-N2-H201		117.1	C8-	—С9—Н9	120.3	8
N1-C1-H1		108.7	C10)—С9—Н9	120.3	8

supplementary materials

C2—C1—H1	108.7	N2—C10—H10	120.2
C5—C1—H1	108.7	С9—С10—Н10	120.2
C1—C2—H21	110.8		
C5—S1—C6—N2	-159.4 (5)	N1-C1-C5-S1	51.7 (8)
C5—S1—C6—C7	21.3 (8)	C2-C1-C5-S1	170.2 (5)
C6—S1—C5—C1	66.8 (5)	C5—C1—C2—C3	-153.7 (7)
C1—N1—C4—C3	2.2 (10)	C1—C2—C3—C4	32.4 (11)
C4—N1—C1—C2	17.3 (7)	C2—C3—C4—N1	-22.0 (12)
C4—N1—C1—C5	141.1 (8)	S1—C6—C7—C8	-179.4 (6)
C6—N2—C10—C9	-1.5 (12)	N2—C6—C7—C8	1.2 (11)
C10—N2—C6—S1	-179.6 (5)	C6—C7—C8—C9	-0.6 (10)
C10—N2—C6—C7	-0.1 (9)	C7—C8—C9—C10	-1.0 (12)
N1—C1—C2—C3	-30.6 (8)	C8—C9—C10—N2	2.1 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H2···Br1	0.86	2.45	3.278 (7)	163
N1—H3···Br1 ⁱ	0.86	2.43	3.271 (5)	165

Symmetry codes: (i) -x+y, -x+1, z+1/3.

Fig. 2